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Abstract

Coalbed natural gas (CBNG) production is as-
sociated with large volumes of produced water.
To date, approximately 12 percent (3.7 TCF) of
the CBNG resource in Wyoming’s Powder Riv-
er Basin (PRB) has been produced. Significant
gas resources remain but will require the contin-
ued production of large volumes of water.

In this report, we classify the approximately
30,000 producing, shut-in, permitted, and per-
manently abandoned CBNG wells by coal zone.
Focusing on the five largest CBNG producing
coal zones, we calculate water to gas ratios, de-
fine “core producing areas,” and identify poten-
tial areas of future development of these coal
zones. In addition, we use water quality data for
337 previously published produced water sam-
ples from specific coal zones to map the spatial
variability of total dissolved solids and sodium
adsorption ratios within these core-producing
areas and to identify potential beneficial uses.

Results from this study show that groundwater
quality becomes more saline and sodic with in-
creasing residence time in the coal bed aquifers.
CBNG produced water quality correlates more
strongly to geographic location than to coal
zone. With the information presented in this
study, it is possible to estimate the produced
water quality of future development within pro-
ducing coal zones. The available water quality
data suggest that most of the CBNG produced
water in the PRB can be used to water livestock
and, with careful management practices, irri-
gate salt-tolerant plants.

Introduction

Coalbed natural gas (CBNG) is associated with
larger volumes of produced water than is recov-
ered during traditional oil and gas production
(Veil et al., 2004). Throughout the last century,
produced water in Wyoming was mainly associ-
ated with oil production. The growth in CBNG

production in Wyoming since 2000 is accom-

panied by a dramatic increase in the volume of
produced water (Figure 1).

The Powder River Basin (PRB) hosts Wyo-
ming’s largest natural gas producing area, ac-
counting for 21 percent of the state’s total natu-
ral gas production (WOGCC, 2010). During
2011, CBNG wells in the PRB produced 478
billion cubic feet (BCF) of gas and 489 million
barrels (MmBDbls) of produced water (Figure
2). This equates to an average of 1.0 barrel (42
gallons) of water produced for each thousand
cubic foot (MCF) of natural gas, although for
individual wells the water to gas ratio is highly
variable. National natural gas reserves have sig-
nificantly increased in recent years, which have
depressed the market price of natural gas. As a
result, CBNG production in the PRB has been
in decline since 2009 (Figure 2). Through 2011,
over 4 TCF of gas has been produced, which
represents roughly 12 percent of the total esti-
mated natural gas resource of the PRB (WSGS,
2010).

CBNG production benefits from a large net-
work of wells that work collectively to lower
the hydrostatic pressure, which enables gas to
desorb and rise to the surface. As more wells are
drilled in a given area, sufficiently low hydro-
static pressure can be attained with less water
production per well. Currently well networks
are focused in the central and northern part of
the PRB (Figure 3). Recovering the remaining
gas resource will require expanding well net-
works into new areas which will require the
production of additional volumes of water. In
order to minimize the cost of managing pro-
duced water, it is important to focus natural gas
recovery from coal seams that produce relatively
low water to gas ratios and where water is of
sufficiently good quality that it can be put to
beneficial use.

CBNG produced water in the PRB is strongly

sodium-bicarbonate type with salinities that
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Figure 1. Oil, water, and gas production from the 50 largest water producing fields in Wyoming. Data from
Wyoming Oil and Gas Conservation website (2010).
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Figure 2. Development of coalbed natural gas in the Powder River Basin from 1994-2011. The number of
wells and the amount of gas and produced water increased dramatically starting around 2000 and peaking
in 2008, and since then has been in steady decline. Data from the Wyoming Oil and Gas Conservation
website (2012).
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Figure 3. Location of CBNG wells in the Powder River Basin, including producing wells (black dots) and
shut-in wells (blue dots). Data from Wyoming Oil and Gas Conservation website (2010) and Quillinan et al.

(2010).



range from 500-5,000 milligrams per liter
(mg/L; Rice etal., 2000; Bartos and Ogle, 2002;
Pearson, 2002; Frost et al., 2002; Campbell et
al., 2008; and Quillinan, 2011a). Sodicity, mea-
sured by sodium adsorption ratio (SAR), ranges
from 5 to 60 (Campbell et al., 2008). For com-
parison, surface waters of the Powder River have
median TDS concentrations of 1,500 mg/L and
SAR of 6 (Brinck et al., 2008). The salinity and
sodicity of all coal zones varies spatially, with
more dilute, lower SAR water produced in the
southeast part of the basin near the main re-
charge areas. Salinity and sodicity tend to in-
crease to the west and north along flow path,
with the highest values in the central part of
the basin beneath the Powder River (Rice et al.,
2000; Bartos and Ogle, 2002; and Campbell et
al., 2008). However, these trends were identi-
fied primarily on water quality data from the
Wyodak Rider and Upper Wyodak coal zones,
and only Campbell et al. (2008) attempted to
examine the data by coal zone. Analysis of a
more comprehensive data set is required to pre-
dict the quality of water that in the future may
be produced from specific coal zones in particu-
lar geographic locations.

The purpose of this report is to describe the
quantity and quality of produced water derived
from five coal zones in the PRB. First, we de-
scribe the geographic location of CBNG pro-
duction from each of the five, main producing
coal zones. We determine the volumes of cumu-
lative produced water and gas from these five
coal zones and calculate the water to gas ratio
for each. We examine new and published wa-
ter quality data for produced water from each
coal zone and plot spatial variations in salin-
ity and sodicity. The water quality of produced
water from each coal zone is then evaluated to
determine its potential beneficial uses, be it for
drinking water, irrigation, livestock, or other
uses. This information is then used to identify
geographic areas with remaining development
potential for each coal zone and to predict the

water quality and water to gas ratios anticipated
in these expanded areas.

Coal Geology of the Powder River Basin

The coals in the PRB are found within the
Tongue River member of the Paleocene Fort
Union Formation and in the Eocene Wasatch
Formation (Love and Christiansen, 1985).
Jones (2008; pers. comm., 2010) has identi-
fied 10 distinct coal zones that contain 26 coal
beds within the Tongue River member and the
overlying Wasatch Formation (Figure 4). The
Tongue River Member hosts the thick, later-
ally continuous coal beds that are mined on the
eastern side of the basin. This report focuses on
the Paleocene coal zones in the PRB from which
most CBNG is produced, including the Wyo-
dak Rider, Upper Wyodak, Lower Wyodak,
Cook, and Wall coal zones. The average and
maximum thicknesses of the coal beds within

these coal zones and their areal extent are pre-
sented in Table 1.

Whodak Rider Coal Zone

The Wyodak Rider coal zone is the youngest of
the five major CBNG producing coal zones. It
consists of three main coal beds, from youngest
to oldest, the Smith Rider, Smith/Big George,
and Lower Smith. These three coals merge in
the center of the basin where they are referred to
as the Big George coal bed. CBNG is produced
from this zone near the basin axis where it is up
to 2,750 feet deep (Jones, 2008). The coals in
the Wyodak Rider coal zone have limited out-
crop north and west of Sheridan, but for the
most part these coals split and pinch out in the
subsurface (Jones, 2008).

Upper Wyodak Coal Zone

The Upper Wyodak coal zone is stratigraphi-
cally below the Wyodak Rider coal zone and
contains three main coal beds, from youngest to
oldest, the Anderson Rider, Wyodak, and Low-
er Anderson (Jones, 2008). This coal zone is the
most extensive of the five CBNG-producing



Formation Coal zone Coal bed
Ulm
Upper Wasatch Lake DeSmet
U Cross
Felix Rider
Viasaicn Felix Upper Felix
Felix
Lower Wasatch Arvada
Unnamed
Upper Roland
Roland Roland of Baker
Roland of Taft
Smith Rider
Wyodak Rider Smith/Big George
Lower Smith
East West
Upper Wyodak Anderson Rider (Anderson) Dietz 1
Anderson (Wyodak) Dietz 2
Fort Union Lower Anderson
Tongue River East West
member Lower Wyodak Canyon Rider
Canyon Dietz 3
Cook (Werner)
GO0k Lower Cook (Gates)
Wall
Wall Lower Wall
Pawnee
Basal Tongue
Moyer
River y

Figure 4. Coal stratigraphy of the Powder River Basin, Wyoming, from Jones

(2008; pers. comm. 2010).

coal zones, and represents the most continuous
hydrogeologic unit of the Tongue River mem-
ber (Table 1; Bartos and Ogle, 2002). Outcrops
of the Upper Wyodak coal zone can be traced
along the entire eastern margin of the basin
where the Tongue River Formation is exposed.
‘The Upper Wyodak coal beds split and coalesce
in various regions. For example, the Upper Wy-
odak coals coalesce with the Canyon coal of the
Lower Wyodak coal zone on the eastern side of
the basin, where they are mined extensively. In
the northwestern side of the basin, the Upper

Wyodak coal zone consists of the Dietz 1 and
2 coal beds. The Upper Wyodak coals were the
first coals targeted for CBNG development in
the PRB (WOGCC, 2010).

Lower Wyodak Coal Zone

The Lower Wyodak coal zone consists of two
main beds, the Canyon Rider and the basal
Canyon coal. The Lower Wyodak coal zone is
present in the eastern and northern half of the
PRB. The Canyon Rider is found only in the
northeast portion of the basin (Jones, 2008). In



Table 1. Average thickness, maximum thickness and areal extent of coal beds within
the five main CBNG producing coal zones of the Powder River Basin from Jones

(2008; pers. comm. 2010).

Coal zone Coal bed

Avg. Thickness Max. Thickness

Areal extent

(ft.) (ft.) (thousand acres)
Smith Rider 17 107 668
Wyodak . .
Rider Smith/Big George 38 216 1,791
Lower Smith 18 100 1,703
Anderson Rider (Anderson) 13 52 1,032
Upper
Wyodak Anderson (Wyodak) 47 208 3,789
Lower Anderson 21 167 2,998
Lower Canyon Rider 10 38 335
Wyodak Canyon 25 205 1,689
Cook (Werner) 22 145 1,788
Cook
Lower Cook (Gates) 9 38 638
Wall 19 139 1,862
Wall Lower Wall 11 58 3,177
Pawnee 11 50 1,097

this study, where the Upper and Lower Wyodak
coals merge, they are considered as part of the

Upper Wyodak coal zone.

Cook Coal Zone

The Cook coal zone consists of two mappable
coal beds, the Cook and Lower Cook. The Cook
is the main CBNG target in this coal zone. The
Lower Cook is much thinner and therefore
not as favorable for CBNG production (Table
1). The Wyoming Oil and Gas Conservation
Commission (WOGCQ) refer to the Cook and
Lower Cook beds as the Werner and the Gates,
respectively. In some places, operators have in-
terchanged the names, calling the upper coal
the Gates and the lower coal the Werner.

Wall Coal Zone

The Wall coal zone is stratigraphically lowest
of the main CBNG producing coal zones. It
consists of three major horizons: the Wall, the
Lower Wall, and the Pawnee (Jones, 2008).
Most CBNG recovered from this coal zone

comes from the Wall coal bed; although the two
lower, beds also produce natural gas (WOGCC,
2010).

Methods

Geospatial Analysis

The CBNG well database used in this report
originated from the Wyoming Oil and Gas
Commission (WOGCC, 2010). Geospatial
analysis was performed using ESRI ArcGIS
software. Wells were sorted by the coal bed in
which they were completed, and then grouped
into coal zones using the nomenclature de-
scribed by Jones (2008; pers. comm., 2010).
The accuracy of these classifications depends on
how accurately the producing interval was re-
ported to the WOGCC. Due to the complexity
of coal stratigraphy in the basin, coal names re-
ported to the WOGCC by operators can be in-
consistent. For this reason, we use coal zones to
group individual coal beds within a particular
sequence. The use of a coal zone simplifies the
spatial analysis by grouping each sequence of



related beds into a stratigraphic interval (Jones,
2008). We note that despite classifying into coal
zones, inconsistencies within the WOGCC da-
tabase still occur. We estimate that fewer than 5
percent of wells are inaccurately classified.

From this compilation, we identified and out-
lined the geographic area(s) where CBNG pro-
duction is most concentrated within each coal
zone. This area we term the “core producing
area’ (CPA); the extent of these areas is shown
on Figure 5. We also determined the geograph-
ic extent of each coal zone where one or more
coal beds has a thickness greater than 10 feet.
Gray shading on Figures 7, 10, 13, 16, and 19

show these coal zone extents.

TDS and SAR for the CPAs were interpolated
with an inverse distance-weighted algorithm us-
ing Environmental Systems Research Institute
(ESRI) spatial analyst software. Contours were
smoothed and quality-checked by hand. De-
pending on data density, outliers do occur in
the contouring.

CBNG Water Quantity and Water to Gas
Ratios

Data on gas and water production from PRB
CBNG wells are also available in the Wyo-
ming Oil and Gas Commission well database
(WOGCC, 2010). Water to gas ratios were
calculated for each of more than 30,500 wells
using cumulative water and gas data reported
to the Wyoming Oil and Gas Commission
(Table 2). Several wells displayed within each
CPA have multiple coal zone completions, and
because it is not possible to determine the pro-
portion of water and gas derived from each coal
zone for these wells, water and gas production
from multi-zone completed wells are not re-
flected in Table 2. For this reason, the total pro-
duced water and gas from each coal zone given
in the table are underestimates. Wells with mul-
tiple completions are included in the “number
of wells” column of Table 2 and are shown in
Figure 5.

Table 2. Number of wells, gas and water production in the Powder River Basin.
*Includes multi-zone completed wells. Only wells that have single coal zone
completions were considered for water and gas production numbers in order to
calculate water to gas ratios by coal zone. The number of wells reported for each
coal zone includes both wells with single and multiple coal zone completions.

Water

Gas

. . Water: gas  Average Average
Coal zone No. of wells production production
(MmBbls) (BCF) (Bbls/MCF) TDS (mg/L) SAR
Wyodak 396 1,200 1,100 1.1 2660 17.6
Rider
Upper «
Wyodak 8586 1,200 770 1.6 830 9.9
Lower "
Wyodak 2211 330 174 1.9 1118 11.8
Cook 3795% 238 155 1.5 2121 20.6
Wall 6551°* 495 130 3.8 1571 17.9
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CBNG Water Quality

A total of 156 published water
quality analyses were compiled
from Pearson (2002), Frost et
al. (2002), and Campbell et al.
(2008). Our study includes an

Table 3. Percentage of undeveloped area outside of the current coal
zone core producing area. Note that large areas remain in all five-coal
zones to be developed outside of the current CPA, particularly in the
stratigraphically lower coals.

Core Coal Zone Percentage
additional 170 unpublished . ;. _Total Coal Total Coal Production EXtent>10  of >101t
water quality analyses from the Zone Extent Zone Extent o™ o) ft outside of —outside of

quatity Y (mi?) > 10 ft (mi2) CPA (mi?) CPA

Wyoming Department of En-
vironmental Quality; these are gﬁggak 5,409 2,940 2,215 1,047 36%
available in Appendix A.

Upper

Wyodak 6,504 4,987 3,547 2,117 42%
The analytical results, available
, y . Lower 5737 2,423 1,889 1.238 51%
in Appendix A, include two key =~ Wyodak
parameters that are calculated —Cook 5,995 3,545 1,244 2,456 69%
from the water quality data: Wall 6,327 4,335 1,692 2,804 65%
total dissolved solids (TDS), a
measure of salinity, and sodium
adsorption ratio (SAR)', a mea-
sure of sodicity. These parameters are of interest Results

particularly if the produced water may be used
for irrigation. Different plants have varying tol-
erance for salinity but in general, high salinity
can affect germination and the emergence and
growth of seedling plants. SAR is another im-
portant measure of the suitability of water for
irrigation. Irrigation with waters that are high in
sodium relative to calcium and magnesium can
degrade soil quality. Over time, the application
of high SAR water to clay-rich soils will disperse
clay particles causing swelling soils and reduced
soil porosity, water infiltration, and root pene-
tration (Hanson et al., 1999). The potential im-
pacts of high SAR are less severe when the water
is of higher salinity because a higher electrolyte
concentration in soil solution reduces the effect
of sodium-induced swelling of clays and associ-
ated changes in soil structure (Hoffman et al.,
1990).

' Sodium adsorption ratio (SAR) is defined as follows:

Na*

Ca2+ + Mg2+
\ 2

where ion concentrations are in milliequivalents per liter

(Stumm and Morgan, 1996).

SAR =

Identification of “Core Producing Areas” for
Each Coal Zone

The geographic extent of the five coal zones ex-
amined is approximately 6,000 mi* (Table 3).
However, the area in which coal thickness is at
least 10 feet is smaller, and varies from 2,400
mi? for the Lower Wyodak coal zone to nearly
5,000 mi® for the Upper Wyodak coal zone.
Natural gas production lies mainly within the
areas where coals are more than 10 feet thick,
but the production areas are smaller than the
total area underlain by coals greater than 10 feet

thick.

Although overlapping in part, the core produc-
ing areas (CPA) for the five coal zones occupy
different parts of the PRB (Figure 5). Produc-
tion from the Wyodak Rider coal zone is focused
in the central portion of the basin, and CBNG
production from the stratigraphically lower coal
zones (Upper and Lower Wyodak) is displaced
towards the eastern margin of the basin nearer
the coal outcrop. The Cook and Wall coal zone
production areas are near the Wyoming/Mon-
tana state line, where these stratigraphically



lowest coals are present at shallower depths.

Water Quantity and Water to Gas Ratios

The amount of water produced from each coal
zone is variable, ranging from 238 million bar-
rels (MmBDbls) for the Cook coal zone, to 1,200
MmBDbls for the Upper Wyodak coal zone (Table
2). These data, combined with gas production
data, allow us to determine the average water to
gas ratio by coal seam. The most favorable gas to
water production— that is, the lowest water to
gas ratio— is associated with the Wyodak Rider
coal zone, where 1.1 Bbls of water are produced
for every thousand cubic feet (MCF) of gas. The
Wall coal zone has highest water to gas ratio: 3.8
Bbls water for each MCF of gas (Table 2).

Water to gas ratios vary spatially and temporally
in the PRB. Water production generally declines
over the lifetime of a well, and gas production
may not commence immediately, leading water

to gas ratios to vary with time. Spatial variations
reflect in part the pattern of CBNG produc-
tion, which typically expands outward from a
cluster of initial wells. Wells drilled farther from
the CPAs tend to have higher water to gas ra-
tios, at least initially (Figure 5). However, some
areas and coal zones produce more gas or water
than others, while some never produce com-
mercial quantities of gas. Figures 7, 10, 13, 16,
and 19 identify areas within the CPAs of each
coal zone that produce gas more effectively than
others do. Areas in which there are many shut-
in or abandoned wells may identify areas where
it is not economical to operate for reasons that
could include poor gas production, high water
production, and/or poor water quality.

Water Quality

The geochemistry of produced water from all
coal zones is strongly sodium bicarbonate type
(n=337; Figure 6). Sulfate is detected in some

P
Y v
—cl —

Figure 6. Trilinear plot showing chemical composition of CBNG produced water. With one exception, all

samples are strongly sodium bicarbonate type.

10



Montana

;~ Wyoming

N

der Riye,

s
Wi

Q.
L/
e
Se,
"fv\-..w
&~
P ’
s";'
¢
-
= o F
I-.",
- -
Little p,
0
o R
M
o
o
z

e
7
Y

&3

et

'

, .J::‘il%e’: jl@
‘\y«

"y
$o
45N
ght
- |
7
3 ’
38’ -
S AT
~ & >3 4
~ . " G ?/-
N §
erton V75 o 70w 40N’
1 |
CBNG Resource Potential Wyodak Rider Coal Zone
Explanation Location Map
Wyodak Rider Coal Zone >10 feet « Shut In Well I T
*  Towns I (Modified from Jones 2008) \., Sheridan ‘
Approximate Wyodak Rider 7 Producing Coalbed Natural Gas Well ——— Crook
1 Cargpbell
o Permitted Coalbed Natural Gas Well Johins
) ston

- -
" I 1 Coal Zone Extent
[ canGproductionarea L2 (Modified from Jones 2008)
Potential CPA expansion !
D T~ Streams # Abandoned Coalbed Natural Gas Well 7 ~
—— Roads
s \liles N | Natrona Converse
20 /

|:] Township Range
0 5 10

Figure 7. CBNG Resource Potential of the Wyodak Rider coal zone, showing present core producing area (outlined
in thick black line), producing, shut in, abandoned and permitted CBNG wells, and areas for possible future

CBNG development of the Wyodak Rider coal zone (outlined in thick red line). Coal thicknesses and coal zone

extent is updated from Jones (2008).

11



shallow wells near recharge that generally also

have low TDS.

The highest TDS (4,467 mg/L) was measured in
the Wyodak Rider coal zone in the basin center
whereas the lowest TDS (362 mg/L) was mea-
sured in the Upper Wyodak coal zone proximal
to outcrop. The highest SAR value was 108,
from a sample of produced water from the Up-
per Wyodak coal zone near the Wyoming-Mon-
tana state line. The lowest SAR values of 3 were
obtained from water produced from the Upper
Wyodak at the southern edge of the CPA. Cur-
rent Wyoming Department of Environmental
Quality standards for irrigation wells requires a

TDS of 2,000 mg/L or less and a SAR 8 or less.

Detailed Results by Coal Zone

Whodak Rider

The Wyodak Rider core producing area was de-
termined from the locations of 9,396 wells pro-
ducing from the Wyodak Rider coal zone (Fig-
ure 5a). The Wyodak Rider CPA was defined
to encompass all but 49 of these wells. Most of
these 49 wells are located across an area north of
the CPA in locations where the coals are thinner
than 10 feet. Many other wells in this area have
been abandoned. The remaining wells are locat-
ed north of Sheridan near the Montana border,
and tend to have high water to gas ratios. The
Wyodak Rider core producing area is 2,216 mi?
and is located in parts of Campbell, Johnson,
and Converse counties.

Nearly one third of the gas produced in the
PRB has come from the Wyodak Rider coal
zone (1,100 BCF; Table 2).. The total water
produced from the Wyodak Rider coal zone
is 1,200 MmBbls, for a cumulative water-to-
gas ratio of 1.08 Bbls of water per MCF of gas
(Table 2). Water to gas ratios are highest on the
outer edge of the producing clusters and are
higher on the western side of the CPA (Figure
5a).Water quality data for the produced water
from the Wyodak Rider coal zone is based on
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data from 98 samples (Figure 6; Appendix A).
Total dissolved solids range from 571 mg/L for
a sample located in the southeast of the CPA to
4,467 mg/L for a sample collected in the north-
western part of the CPA. The average TDS for
produced water from the Wyodak Rider coal
zone is 1,768 mg/L. TDS generally increases
along the approximate groundwater flow path
from the southeast to the northwest of the CPA
(Figure 8). SAR for the Wyodak Rider CPA
ranges from 5 in the southeastern part of the
CPA to 59 in the north, with an average value
of 11.8. The highest SAR values coincide with
the area where the Big George coal is thickest.
As was the case for TDS, SAR values generally
increase from the southeast to the northwest,
parallel with the direction of groundwater flow

(Figure 9).

Upper Wyodak

The Upper Wyodak CPA was defined based on
the location of 8,586 wells. All but 1 percent
(71) of these wells lie inside of the CPA. The
Upper Wyodak CPA lies mainly in Campbell
County, but also occupies portions of Sheridan,
Johnson, and Converse counties (Figure 10).
We have included in the Upper Wyodak CPA
areas where Upper Wyodak coals have merged
with the Canyon coal bed of the Lower Wyodak

coal zone.

The Upper Wyodak coal zone has produced 770
BCF of gas and 1.2 MmBbls of water. The cu-
mulative water to gas ratio for the Upper Wy-
odak coal zone is 1.6 Bbls of water per MCF
of gas (Table 2). Production in this coal zone
started in the east near coal outcrop and subse-
quently moved westward. Shallow wells in the
east where production started currently produce
little to no water. A number of the older wells
no longer produce gas and have been temporar-
ily or permanently abandoned (Figure 10).

The chemical composition of the produced wa-

ter in the Upper Wyodak Coal zone is based
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upon analyses of water samples from 169 wells
(Figure 6; Appendix A). TDS concentrations
for the Upper Wyodak CPA range from 362
to 3,046 mg/L with a mean value of 917 mg/L
(Figure 11); these are slightly lower than the
Wyodak Rider CPA in the same vicinity. SAR
range from 2.2 to 108 with a mean value of
10.7. The highest SAR in the Upper Wyodak
CPA is found at the Wyoming-Montana state
line (Figure 12). TDS and SAR increase along
groundwater flow direction from the south to
the north (Figures 11, 12).

Lower Wyodak

‘The Lower Wyodak CPA was determined based
on the location of 2,211 wells. These wells clus-
ter in four areas (Figure 13): CPA-1 is located
in Sheridan County south of the Wyoming-
Montana state line and includes 48 wells; all
have multi-zone completions. CPA-2 is located
in Sheridan, Campbell, and Johnson counties,
contains 1,604 wells, and represents the pro-
duction area of the Lower Wyodak coal zone
north of where the Upper and Lower Wyodak
coals coalesce. CPA-3 is mainly in Johnson
County. It includes 82 wells of which all but
one well is shut-in or abandoned. Only 10 of
the 82 wells drilled in CPA-3 report any gas
production and none of the wells have reported
commercial gas production. CPA- 4 is located
south of the Upper and Lower Wyodak merger
and contains 469 wells (Figure 13). Wells in this
area are clustered in the two regions where the
Canyon coal of the Lower Wyodak exceeds ten
feet in thickness. Since CPAs 1 and 3 have pro-
duced little to no gas, we dash the boundaries of
these areas on Figure 13.

Wells completed in the Lower Wyodak coal
zone have produced 174 BCF of gas and 330
MmBblIs of water. The cumulative water to gas
ratio for the Lower Wyodak CPA is 1.9 Bbls of
water per MCEF of gas (Table 2). Water to gas ra-
tios are highest in new production areas, on the
western edge of CPA-2, where the wells have

18

multiple completions in the Canyon, Cook,
and Wall coal zones (Figures 5c and 13).

The chemical composition of produced water
from the Lower Wyodak coal zone was charac-
terized on the basis of water sampled from 30
wells (Figure 6, Appendix A). TDS ranges from
537 mg/l to 1,611 mg/L with a mean value of
1,118 mg/L. The TDS concentrations increase
from the south to north along the direction
of groundwater flow (Figure 14). SAR values
range from 4 to 27, with a mean value of 11.8

(Figure 15).

Cook

In the PRB, 3,795 wells produce from the Cook
coal zone (Table 2). The Cook CPA (Figure
5-d) encompasses 3,415 of those wells. Approx-
imately half (1,489) of these wells have com-
mingled completions with other coal zones.
Cumulative gas and water produced from the
Cook coal zone was based only on the 2,308
wells that have single completions in the Cook
coal zone; thus, the compilation of the amount
of produced gas and water underestimate pro-
duction. The single completion wells in this coal
zone have produced more than 155 BCF of gas
and 238 MmBDbls of water, a water to gas ratio
of 1.5 (Table 2). The Cook CPA is broken into
two areas: the Cook CPA-1 is a smaller area lo-
cated in Sheridan County (T58-57N and R79-
81W); the Cook CPA-2 extends across Sheri-
dan, Campbell, and Johnson counties (T49-58,
R 73-78W) (Figure 16).

Water quality data comes from 14 analyses of
produced water from the Cook coal zone, all
but one of which lie within CPA-2. The TDS of
the single sample from CPA-1 is 2,075 mg/L.
TDS of water samples from CPA-2 range from
1,004 mg/L to 2,714 mg/L, with a mean of
1,864 mg/L (and with a high standard deviation
of 720). The values increase from the eastern
margin of the Cook CPA-2 and are the highest
in the southwest corner (Figure 17). The single
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SAR value from CPA-1 is 63. In the CPA-2 the
SAR ranges from 9 to 62.7, with a mean value
of 22.3. SAR values increase from the southeast
to the northwest of the CPA-2 (Figure 18).

Wall

A total of 6,551 wells are completed in the Wall
coal zone (Table 2). The Wall CPA (Figure 5e)
encompasses 93 percent (6,138) of these. A to-
tal of 1,092 Wall coal zone wells have commin-
gled completions with stratigraphically higher
coal zones. Cumulative gas production from the
single completion wells in the Wall coal zone is
130 MCF and cumulative water production is
495 MmBDbls. These data yield water to gas ratio
of 3.8 Bbls/MCE, the highest of any coal zone
(Table 2).

Water quality data is available from 15 samples.
TDS range from 586 to 2664 mg/L, increasing
from east to west. The highest TDS are observed
in the southwest of the Wall CPA (T51N and
R77W; Figure 20). The Wall coal zone has an
average TDS of 1,531 mg/L. Sodium adsorp-
tion ratios were calculated from the laboratory
measurements of 12 samples and range from
9.6 to 74.3 with an average value of 21.3 (Fig-
ure 21).

Discussion

Based on the results above, we summarize the
variations in CBNG water quality within the
PRB and discuss possible beneficial uses for
these waters. We then identify potential areas of
future gas development and estimate the quality
of water that will be produced along with this
natural gas.

CBNG Water Quality

The quality of water produced with CBNG
determines beneficial use of that water. For ex-
ample, water used for irrigation must meet cer-
tain salinity and sodicity thresholds that vary
depending upon soil type and the plant spe-

cies cultivated. Concern that surface discharge
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of water produced with CBNG may degrade
surface water quality led Montana to promul-
gate water quality standards under the Clean
Water Act (CWA) for rivers that flow from the
area of production in Wyoming into Montana
(Clean Water Act, 1972; Montana Board of En-
vironmental Review, 2002 and 2005). Montana
named irrigated agriculture as the beneficial use
most sensitive to development of CBNG and
the associated discharge of produced water.
Montana identified electrical conductivity (a
proxy for TDS) and SAR as principal constitu-
ents of concern in CBNG produced water. The
Montana regulations were subsequently chal-
lenged and in October 2009, the U.S. District
Court vacated the EPA’s approval of these stan-
dards (Frost and Mailloux, 2011). Nevertheless,
concern remains that CBNG produced waters
have the potential to degrade surface water-
sheds, impacting beneficial use (Horpestad et
al., 2001). In addition, the spatial variability in
quality of produced water in the PRB suggests
that certain uses of produced water may be pos-
sible in some areas but not in others.

By describing the spatial patterns in salinity
and sodicity of produced water within each coal
zone, we can predict TDS and SAR for poten-
tial new areas of CBNG development. We can
make some general observations based upon
our results and analysis above. First, TDS and
SAR generally increase from southeast towards
the center of the basin. The trends are similar
in all coal zones; this suggests that areas of high
TDS and SAR are not coal zone specific but are
related to their general position along ground-
water flow path. Many of these coals outcrop
in close proximity, thus the distance along the
flow path is similar for all coal zones. For this
reason the water quality of produced water cor-
relates with geographic location, regardless of
the coal zone from which the water is extracted.
TDS and SAR are generally highest for water
produced near the course of the Powder River,
north of the confluence with Crazy Woman
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Creek. In addition, relatively high TDS have
been measured in produced water from the Up-
per and Lower Wyodak coal zones in a small
area northwest of Gillette (Figures 11 and 14).
We note some important gaps in our dataset; for
example, no water quality data are available for
the Lower Wyodak coal zone in the area in the
center of the basin where TDS and SAR tend to
be high in all other coal zones (Figure 13).

Beneficial Use of Produced Water

The Wyoming Department of Environmental
Quality (WDEQ) provides general guidance on
water quality standards for different beneficial
uses of groundwater wells, including domestic
water (Class I), water for agriculture (Class II),
and water for livestock (Class III). Other uses
include water for fish and aquatic life and wa-
ter for industry (WDEQ, 2005). Waters meet-
ing Class I, II, or III standards must contain no
more than specified threshold amounts of a vari-
ety of constituents. Among these, domestic wa-
ter should have no more than 500 mg/L TDS.
Waters meeting a standard for agriculture must
have SAR of 8 or less and a TDS no greater than
2,000 mg/L (WDEQ, 2005). According to the
WDEQ (2005), waters used for livestock may
have up to 5,000 mg/L TDS.

Other sources suggest that more saline and sodic
water may be used for agriculture with careful
management practices (Rhoades, 1982; Hoft-
man et al.,, 1990; Hanson, 1999; and Bauder
et al., 2007). One important control is the rela-
tionship between TDS and SAR; as we noted in
the methods section above, a higher SAR may
be tolerated if salinity also is higher. Recently
the WDEQ have implemented new monitor-
ing guidelines in some of the irrigated drain-
ages within the PRB (Pumpkin Creek, Willow
Creek, and Dead Horse Creek). The heightened
monitoring requirements call for monthly to
quarterly sampling of SAR and electrical con-
ductivity, a proxy for TDS, among other con-
stituents, which may include sodium, calcium,
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magnesium, potassium, chloride, sulfate, bicar-
bonate, and carbon isotopes (WDEQ, 2011).
Although monitoring of several constituents is
required, thresholds are primarily based on the
relationship between SAR and EC2.

Figure 22 relates TDS and SAR of PRB pro-
duced water. Examination of this plot shows
that produced water from the Upper Wyodak
coal zone generally is the least saline and sodic,
and most wells meet the WDEQ standard for
agricultural use. In contrast, produced water
from the Lower Wyodak is similarly dilute but is
more sodic, and few analyses meet the WDEQ
standards for agricultural use. Produced water
from the Wyodak Rider can be quite saline, but
water from most of the wells sampled falls below
the line above which soil structure is affected
to an extent that infiltration may be decreased
(Rhoades, 1982). Water from Cook and Wall
coal zones have variable TDS and SAR. Few
meet the WDEQ standards for agricultural use
and many exceed the infiltration threshold. The
beneficial use of these waters could be expanded
through various water treatment and/or soil
amendment practices. Clearly it is necessary to
examine the spatial distribution of water qual-
ity from each of these coal zones to determine
the beneficial use and or treatment options that
are suitable for produced water from any given
location.

Future Potential Development

Future CBNG development may be best fo-
cused by locating new wells in areas with a
probability of high gas production, low water
production, and acceptable water quality. This
study reveals that for some coal zones this will
be achieved by additional production within

2 For additional information on how/why the
aforementioned constituents may be relevant to identifying
and tracing CBNG produced water, the reader is referred to
Brink and Frost (2007), Brinck et al. (2008), Campbell et
al. (2008), Frost et al. (2010), Mailloux, et al. (in press),
McLaughlin et al. (2011), Quillinan and Frost (2011),
and Quillinan (20115).
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from Appendix A.

the present CPA. For other coal zones, it may
be more advantageous to expand the CPAs, as
described in detail below.

Whodak Rider

To date, the Wyodak Rider coal beds have been
targeted by more wells than any other coal zone.
Production has focused on the thickest coal, the
Big George, because of its thickness and rela-
tively high gas content. The current core pro-
ducing area covers roughly 65 percent of the
area with coals that exceed 10 ft. or greater
thickness (Table 3). On Figure 6, a red outline
identifies a few areas that may be suitable for
expansion outside of the current CPA. One is
an area north of the present CPA, about halfway
between Clearmont and Gillette. In this area,
there are coals with thicknesses greater than 10

feet. Figures 8 and 9 suggest that TDS may be
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between 1,500 and 4,000 mg/L, and SAR val-
ues could range from 20-30. We note, however,
that previous wells drilled in this area, albeit
few, have been shut-in or abandoned. It would
be important to establish why these wells are no
longer in production before undertaking addi-
tional drilling in this area.

Another area that may be suitable for future
production is located northeast of Kaycee and
west of the current CPA. TDS and SAR of pro-
duced water from this area are estimated to be
2,500-3,000 mg/L and 20, respectively (Figure
8 and 9), which would be suitable for irrigating
salt tolerant crops (Figure 23). Finally, expan-
sion of Wyodak Rider production to the east
around Wright and extending toward Gillette
would likely be associated with dilute, low SAR
produced water with TDS <1,000 mg/L and
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SAR <10. Water to gas ratios in this area are
also low (Figure 5a). This water will likely meet
WDEQ water quality standards for irrigation,
but may exhibit adverse effects on soil structure.
Blending with higher salinity water produced
elsewhere from the Wyodak Rider coal zone
could lower the risk of soil degradation.

In addition, there is potential for infill drilling
within the Wyodak Rider CPA. Figure 7 il-
lustrates active permitted wells as yellow dots.
Figures 8 and 9 can be used to estimate the
produced water quality from these future wells;
water quality should be best for those wells
planned for the southern part of the CPA.

Upper Wyodak

The Upper Wyodak CPA encompasses ap-
proximately 58 percent of the Upper Wyodak
coal zone (Table 3). Most of the undeveloped
area of the Upper Wyodak lies beneath current
Wyodak Rider-Big George production, west of
current Upper Wyodak production (Figure 10).
Expansion in this area would move towards the
basin axis and away from recharge. Trends ob-
served by Rice et al. (2000) and Campbell et
al. (2008), and further supported by this study,
suggest that further western expansion of the
Upper Wyodak coal beds will lead to higher
TDS and consequently higher SAR values. Lack
of well data to the west make estimates uncer-
tain but based on water quality data from the
Wyodak Rider in the same area; we predict that
TDS and SAR from the Upper Wyodak could
be higher than water currently produced from
the Wyodak Rider. Wells with water to gas ra-
tios greater than 25 also occur in higher density
in this direction, perhaps reflecting greater hy-
drostatic pressures in the coal beds farther down

dip.

Very few wells are permitted for immediate
development in the Upper Wyodak coal zone
(Figure 10). These wells will likely produce wa-
ter with TDS less than 1,500 mg/L and SAR
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ranging from 10-15. Water of this quality meets
the WDEQ standard for agricultural use and
lies beneath the threshold above which soil
structure is affected such that infiltration is re-
duced (Figure 22).

Lower Wyodak

Approximately 50 percent of the Lower Wyo-
dak coal zone where coals exceed 10 feet thick
remains to be developed (Table 3; Figure 13).
The locations of permitted wells indicate where
immediate future development in the Lower
Wyodak CPA will take place (Figure 13). The
probable quality of produced water can be es-
timated from the spatial variations in existing
data available from the eastern part of CPA-2
(Figures 14 and 15). If the CPA were to expand
to the north and northeast, TDS of produced
water may range from 1,000-1,500 mg/L with a
SAR likely varying from about 10 to potentially
above 25. Estimates for a southwest expansion
are more problematic due to the lack of data in
this area. However, elevated TDS is measured in
all other coal zones in this area (Figures 8, 11,
17, and 20) suggest similarly high TDS is likely

for the Lower Wyodak coal zone as well.

Cook and Wall

Both the Cook and the Wall coal zones have
large areal extents with a majority of coal greater
than 10 feet thick (Figures 16 and 19). Nearly
70 percent of the Cook coal zone and 65 per-
cent of the Wall coal zone has not yet been
developed (Table 3). Relatively little is known
about these two deepest coal zones. Most of the
potential area for future development in these
zones is southeast of the current CPAs, up-gra-
dient from groundwater flow. This would sug-
gest that future development of these coals will
produce water of equal or lower TDS than is
currently produced. Water to gas ratios for these
two coal zones are lowest in the northeast cor-
ners of the respective CPA (Figures 5d and 5e),

and bode well for developing these areas.



Future potential development of all coal zones.
As water quality regulation and ultimately eco-
nomics tighten on the CBNG industry, it is be-
coming more common that wells are completed
in multiple coal zones. The CBNG resource
maps in this study outline areas of potential ex-
pansion (red outlines on Figures 7, 10, 13, 16,
and 19). Many of these areas overlap, and thus
identify locations of potential multiple-zone
targets. The intersections of these areas have
been compiled on Figure 23, and indicate the
number of coal zones that remain to be devel-
oped in a particular location. It should be noted
that even though multiple coal zones remain to
be developed within these areas, CBNG wells
in the area may already be producing from one
or more coal zones. Thus the infrastructure is in
place for developing additional coal zones. For
example, in the center of the basin, the map in-
dicates that four overlapping coal zones could
be developed (Figure 23). Existing wells within
this area are producing from the Wyodak Rider
coal zone (Figure 7). The four additional coal
zones that lie below the Wyodak Rider coal zone
will likely yield produced water that is of equal
or better quality than water produced elsewhere
from these zones. This example suggests a strat-
egy by which CBNG development in the PRB
may continue to increase with minimal surface
disturbance, producing water that could poten-
tially be put to beneficial use.

Conclusions

Classifying wells by coal zone and plotting these
locations geospatially, enable definition of “core
producing areas” for the five main CBNG-pro-
ducing coal zones. Furthermore, we are able to
predict the water quality for produced water re-
covered from these coal zones, and identify ar-
eas of low water to gas ratios, all of which may
indicate favorable conditions for future devel-
opment.

For all coal zones, TDS and SAR generally in-

crease from the southern and eastern margins
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of the PRB towards the basin axis. Detailed
examination of water quality information pre-
sented spatially and by coal zone in this study
can be used to estimate produced water qual-
ity for future development. Although there are
some differences that are related to the coal zone
from which water is produced, in general, the
geographic location of a well is more predictive
of TDS and SAR than the coal zone in which it

is completed.

Common constituents used to determine ben-
eficial use of produced water, particularly for
irrigation, are SAR and TDS. These constitu-
ents are correlated: water with high SAR may
be used for irrigation without impacting soil
quality if TDS is also high. Our examination of
337 analyses of produced water from the PRB
suggests that most produced water in the PRB
water if integrated with careful management
practices, could be used to irrigate salt-tolerant
plants. We refer the reader to Brinck and Frost
(2009) for a more detailed description of the
impacts of irrigating with produced water in the
PRB and the management practices required to
maintain soil health.

Primarily completed in the Big George coal
bed, the Wyodak Rider coal zone hosts more
wells than any other coal zone. This coal zone
has produced more gas than any other coal zone
and has the lowest water to gas ratios. The Up-
per and Lower Wyodak coal zones were devel-
oped prior to the Wyodak Rider coal zone. They
have slightly higher water to gas ratios than the
Wyodak Rider. The coal zones that have pro-
duced the least amount of gas are the Cook and
Wall coal zones, although it is important to
note that many of these wells share multi-zone
completions with other coal zones, making to-
tal gas production estimates from the Cook and
Wall coal zones difficult to quantify.

Large areas for each coal zone remain to be de-
veloped inside and outside of their current core



producing area. With the information present-
ed in this study, future development in the PRB
could focus on areas where multiple production
intervals are present and the water quality can
be estimated. This approach would continue
the development of the vast CBNG resource,
utilize existing infrastructure, minimize surface
disturbance, and produce water most suitable
for beneficial use.
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